Question 36: What are your primary indicators that a coker furnace spall is complete? What steps do you take to optimize the efficiency of spalling?

Delayed coker furnace spalls are performed to remove the buildup of coke on the inner walls of the furnace tubes in order to improve furnace heat transfer and maintain unit throughput and efficiency. As furnace spalls require coker and sometimes refinery crude rate reductions, they should be planned and communicated effectively to the refinery’s Planning Department to ensure that crude and product inventories are managed appropriately.

Question 33: What conditions are tied to fired-heater shutdown interlocks? Do these cause an immediate shutdown, or are there any time delays built into the logic? If so, how long of a time delay do you use? Are there any operating conditions that would allow interlocks on fired heaters to be bypassed?

Marathon Petroleum Corporation (MPC) standard practices rely heavily on the guidance recommended by API 556. Most of our heater shutdown interlocks are derived from this API Recommended Practice. Our internal practices are intended to prevent a heater explosion due to uncombusted fuel in the firebox or a tube rupture that can lead to an explosion or uncontrolled fire.

Question 31: What are the potential impacts to hydrocracking units [i.e., deactivation rate, HPNA (heavy polynuclear aromatics) formation, etc.] as heavy coker gasoil (HCGO) rate/endpoint are increased?

Processing heavier and cracked feedstocks poses many challenges to the hydrocracking unit. Thermally-cracked feedstock such as HCGO, apart from being unsaturated, has relatively lower API, higher sulfur, and nitrogen content, higher proportion of C7 insoluble, and Conradson carbon residue (CCR). An increase in the HCGO distillation endpoint results in a significant increase in the proportion of polynuclear aromatics (PNA) and asphaltenes, both of which are coke precursors, which results in an exponential increase in catalyst deactivation rates. 

Question 30: What are common mechanical defects that occur to the weld overlay material in hydroprocessing reactors? What are the most common locations for defects, and does the location play a factor in the mechanical integrity of the equipment? How do you detect and repair the defects? How often do you conduct Remaining Life Analysis (RLA) and/or Fit For Service (FFS) Assessment on critical equipment?

The common mechanical defects that occur are disbonding and cracking. Non-vanadium-modified 2¼ Cr-1 Mo material is more susceptible to disbonding than vanadium-modified 2¼ Cr-1 Mo-V material. V-modified 2¼ Cr-1 Mo has a much higher solubility of hydrogen compared to conventional 2¼ Cr -1 Mo. 

Question 28: Under what conditions will you strip sulfur from hydrotreating/hydrocracking catalysts?

Base-metal hydrotreating and hydrocracking catalysts are susceptible to sulfur stripping at high temperature in the presence of flowing hydrogen and in the absence of H2S. For that reason, we advise unit operators to avoid prolonged exposure of sulfided catalysts to flowing hydrogen at temperatures exceeding 500°F if the H2S content of the hydrogen is below 50 ppmv (parts per million by volume).