Skip to main content
Home Home

Main navigation

  • Industries
    • Products
    • Operations
    • Performance
    • People
    • Contributions

    Industries

    We represent the makers of the fuels that keep Americans moving and the petrochemicals that are the essential building blocks for modern life. Our industries make life better, safer, more productive and — most of all — possible.

  • Issues
    • Fuels & Vehicles
    • Environment
    • Petrochemicals
    • Safety & Health
    • Security
    • Tax & Trade
    • Transportation & Infrastructure
    • Regulatory Reform

    Issues

    We advocate for public policies that promote growth and investment in the refining and petrochemical manufacturing industries to help drive our economy, add jobs, increase energy security and remain competitive in a global economy.

  • Events
    • My Meetings
    • Speaker Guidelines
    • Meeting FAQ
    • Sponsorship
    • Upcoming Events

    View AFPM Calendar of Events

    We offer a portfolio of first-in-class events that educate our members and other stakeholders on critical technical and advocacy issues, supporting the safety, security and success of the fuel and petrochemical industries.

     

  • Newsroom
  • Search
    Enter a list of keywords and press Enter to submit your search query.

Utility Menu (Mobile)

  • About Us
  • Membership
  • Data & Reports
  • Safety Programs

User account menu

  • My AFPM

Social Media Menu - Header

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

Utility Menu

  • About Us
    • About AFPM
    • Our History
    • Careers
    • Contact Us
  • Membership
    • AFPM Membership
    • Member Directory
  • Data & Reports
    • Data & Statistics
    • Publications
    • Technical Papers
    • Annual Report
    • Sustainability Report
  • Safety Programs
    • Safety Portal
    • Advancing Process Safety Programs
    • Occupational Safety Programs
    • Safety Statistics Programs
    • Safety Awards & Recognition
Enter a list of keywords and press Enter to submit your search query.

Q&A

Find the answer to your technical question in AFPM's extensive Q&A database.

wave
  1. Data & Reports
  2. Technical Papers
  3. Q&A

Q&A

These digital transcripts are meant to share information on process safety practices in order to help improve process safety performance and awareness throughout industry. The goal is to capture and share knowledge that could be used by other companies or sites when developing new process safety practices or improving existing ones. The documents being shared have been used by an industry member, but this does not mean it should be used or that it will produce similar results at any other site. Rather, it is an option to consider when implementing or adjusting programs and practices at a site. ​

BY THEMSELVES, THESE DIGITAL TRANSCRIPTS ARE NOT STANDARDS OR RECOMMENDED PRACTICES. THEY ARE NOT INTENDED TO REPLACE SOUND ENGINEERING JUDGMENT. THEY DO NOT PRECLUDE THE USE OF ALTERNATIVE METHODS THAT COMPLY WITH LEGAL REQUIREMENTS. A SUBJECT MATTER EXPERT SHOULD BE CONSULTED PRIOR TO DETERMINING WHETHER A PRACTICE CAN BE USED IN ANY SPECIFIC SITUATION. 

​

Process

  • Gasoline Processing
    • Safety
    • Gasoline Processing
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • FCC
    • Alkylation
    • Environmental
    • Catalysts
  • Crude/Coking
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Coker
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • CAT POLY Units (CAT Poly)
    • Desalting
    • Naphtha Hydrotreating
    • Safety
  • Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD

Submitter

  • Operator
  • Licensor
  • Consultant
  • Vendor

Year QA

  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2008
Search Filters

Process

  • Gasoline Processing
    • Safety
    • Gasoline Processing
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • FCC
    • Alkylation
    • Environmental
    • Catalysts
  • Crude/Coking
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Coker
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • CAT POLY Units (CAT Poly)
    • Desalting
    • Naphtha Hydrotreating
    • Safety
  • Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD

Submitter

  • Operator
  • Licensor
  • Consultant
  • Vendor

Year QA

  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2008
Filters

(2010) Question 37: Silicon poisoning of NHT catalysts has been observed in refineries without coking units. In your experience, what are the potential sources of silicon and what are the best practices to manage risk of such poisoning?

Marathon has had to deal with issues of non-coker silicon in naphtha’s since at least 2001. For background purposes, it is Marathon’s experience that silicon blocks the pores on hydrotreating catalyst and can impact catalyst activity. In severe cases, silicon breaks through to the reforming catalyst can occur where it can form silicon dioxide during the regeneration process which can cover the platinum sites.
Read more

(2010) Question 38: What measurements and criteria do you use to decide when to change your gas and liquid chloride absorber material? How do you determine the selection of absorber material?

For both gas and liquid service, Chevron monitors the inlet HCL/Total Chloride and replaces the adsorbent/molecular sieve based on material balance loading of chloride on the adsorber media. Chevron does monitor adsorbent outlet HCL/Total Chlorides, but as a best practice will change the adsorbent material before vendor maximum loading if breakthrough has not occurred.
Read more

(2010) Question 39: With lower severity requirements due to ethanol blending and corresponding reduced coke make in the reformer, what changes are you making in regards to reformer operation? What opportunities does this evolution present for both CCR and semi-regen units?

Increased ethanol blending has reduced the severity of the reformers on average 2 octane numbers. This has increased reformate yield and decreased hydrogen production. Although the octane boost realized by ethanol blending reduces overall pool octane requirements, minimum reformer severity may be dictated by octane requirements of premium gasoline grades, or by refinery hydrogen requirements.
Read more

(2010) Question 40: Has anyone experienced high chloride levels in off gases from the lock hopper of a pressurized regenerator? What are the consequences of the high levels (i.e. fouled burner tips)? What are ways to mitigate the problem?

Marathon has not experienced any high hydrogen chloride concentrations in Lock Hopper off gases from the two CycleMax regenerators that we operate. We have also not experienced problems with fouled burner tips due to high hydrogen chloride in the fuel gas to a heater.
Read more

(2010) Question 41: Do you have any experience with plugging of chloriding agent injection points in regenerators? How has this been overcome?

The chloride injection line has a nitrogen purge connected with the intent to sweep the chloride into the chlorination gas line. In most designs, the nitrogen and organic chloride line join together before the chloride on/off valve. When the chloride valve closes, both chloride and nitrogen sweep are stopped.
Read more

(2010) Question 42: In your experience, what are the typical causes of damage to the top of the regenerator inner screen?

The typical cause for damage in the top 2-3 ft of inner screen is metal fatigue due to thermal cycling.
Read more

(2010) Question 43: In both Extractive Distillation and Liquid-Liquid Extraction units, foaming in the Extractive Stripper column leads to solvent carryover and unit upsets. What are the determinants of foaming, and how do you determine foaming risk? Is continuous antifoam injection necessary? What are the countermeasures do you take to minimize this risk?

Marathon has two liquid-liquid extraction units. Both are fed from reformers. We continuously inject anti-foam into the stripper feed. The only foaming events we have observed have been after the loss of anti-foam injection.
Read more

(2010) Question 44: Contaminants in aromatics extraction unit feeds such as chlorides and oxygen are difficult to measure, and can lead to operational issues (such as fouling / corrosion / erosion, etc) in the extraction unit. In your experience, what are the primary effects of these contaminants, and how can one manage these impacts?

Most of Marathon’s experiences with contaminants that affect solvent quality are with oxygen. Oxygen can enter the unit from solvent storage, feed, and re-run tanks. Any vessel operating under a vacuum can also be source of oxygen. Most of our issues with corrosion have occurred in the stripper and recovery column reboilers.
Read more

(2010) Question 45: In Udex extraction units, what options (process variables / solvent composition / solvent type) do you employ to improve aromatic recovery without compromising unit capacity?

In Udex extraction units, what options (process variables / solvent composition / solvent type) do you employ to improve aromatic recovery without compromising unit capacity?
Read more

(2010) Question 46: What is the panel's experience with in-line blending and in-line certification? What are the main differences between in-line blending and certification?

For clarity, a common definition of “in-line blending” is required. Marathon defines in-line blending as a system that pumps multiple blend components from individual tanks, which are typically “live” (either receiving or capable of receiving components from a process unit or pipeline delivery) into a header. The header generally contains static mixing to ensure homogeneity of the blend.
Read more

Pagination

  • First page
  • Previous page ‹‹
  • …
  • Page 160
  • Page 161
  • Page 162
  • Page 163
  • Current page 164
  • Page 165
  • Page 166
  • Page 167
  • Page 168
  • …
  • Next page ››
  • Last page

Data & Reports

  • Data & Statistics
  • Publications
  • Technical Papers
  • Annual Report
  • Sustainability Report

Stay in the Know

Subscribe to our monthly industry insights newsletter.

Footer menu (first)

  • My AFPM
  • Events
  • Safety Portal
  • Petrochemical Portal

Footer menu (second)

  • Contact Us
  • Privacy Policy
  • Legal

Connect with Us

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

© 2025 AFPM. All rights reserved 
American Fuel & Petrochemical Manufacturers
1800 M Street, NW Suite 900 North
Washington, DC 20036

Back to Top