Skip to main content
Home Home

Main navigation

  • Industries
    • Products
    • Operations
    • Performance
    • People
    • Contributions

    Industries

    We represent the makers of the fuels that keep Americans moving and the petrochemicals that are the essential building blocks for modern life. Our industries make life better, safer, more productive and — most of all — possible.

  • Issues
    • Fuels & Vehicles
    • Environment
    • Petrochemicals
    • Safety & Health
    • Security
    • Tax & Trade
    • Transportation & Infrastructure
    • Regulatory Reform

    Issues

    We advocate for public policies that promote growth and investment in the refining and petrochemical manufacturing industries to help drive our economy, add jobs, increase energy security and remain competitive in a global economy.

  • Events
    • My Meetings
    • Speaker Guidelines
    • Meeting FAQ
    • Sponsorship
    • Upcoming Events

    View AFPM Calendar of Events

    We offer a portfolio of first-in-class events that educate our members and other stakeholders on critical technical and advocacy issues, supporting the safety, security and success of the fuel and petrochemical industries.

     

  • Newsroom
  • Search
    Enter a list of keywords and press Enter to submit your search query.

Utility Menu (Mobile)

  • About Us
  • Membership
  • Data & Reports
  • Safety Programs

User account menu

  • My AFPM

Social Media Menu - Header

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

Utility Menu

  • About Us
    • About AFPM
    • Our History
    • Careers
    • Contact Us
  • Membership
    • AFPM Membership
    • Member Directory
  • Data & Reports
    • Data & Statistics
    • Publications
    • Technical Papers
    • Annual Report
    • Sustainability Report
  • Safety Programs
    • Safety Portal
    • Advancing Process Safety Programs
    • Occupational Safety Programs
    • Safety Statistics Programs
    • Safety Awards & Recognition
Enter a list of keywords and press Enter to submit your search query.

Q&A

Find the answer to your technical question in AFPM's extensive Q&A database.

wave
  1. Data & Reports
  2. Technical Papers
  3. Q&A

Q&A

These digital transcripts are meant to share information on process safety practices in order to help improve process safety performance and awareness throughout industry. The goal is to capture and share knowledge that could be used by other companies or sites when developing new process safety practices or improving existing ones. The documents being shared have been used by an industry member, but this does not mean it should be used or that it will produce similar results at any other site. Rather, it is an option to consider when implementing or adjusting programs and practices at a site. ​

BY THEMSELVES, THESE DIGITAL TRANSCRIPTS ARE NOT STANDARDS OR RECOMMENDED PRACTICES. THEY ARE NOT INTENDED TO REPLACE SOUND ENGINEERING JUDGMENT. THEY DO NOT PRECLUDE THE USE OF ALTERNATIVE METHODS THAT COMPLY WITH LEGAL REQUIREMENTS. A SUBJECT MATTER EXPERT SHOULD BE CONSULTED PRIOR TO DETERMINING WHETHER A PRACTICE CAN BE USED IN ANY SPECIFIC SITUATION. 

​

Process

  • Gasoline Processing
    • Gasoline Processing
    • Reforming
    • Safety
    • Desalting
    • Naphtha Hydrotreating
    • Aromatics
    • Blending
    • HF Alkylation (HF Alky)
  • Crude/Coking
    • Corrosion
    • Process
    • Distillation
    • Vacuum Tower
    • Mechanical
  • FCC
    • Environmental
    • Alkylation
    • Catalysts
  • Hydroprocessing
    • Feed Quality
    • Hydrocracking Catalyst

Submitter

  • Operator
  • Licensor
  • (-) Consultant
  • (-) Vendor

Year QA

  • 2019
  • 2010
  • 2008
Search Filters

Process

  • Gasoline Processing
    • Gasoline Processing
    • Reforming
    • Safety
    • Desalting
    • Naphtha Hydrotreating
    • Aromatics
    • Blending
    • HF Alkylation (HF Alky)
  • Crude/Coking
    • Corrosion
    • Process
    • Distillation
    • Vacuum Tower
    • Mechanical
  • FCC
    • Environmental
    • Alkylation
    • Catalysts
  • Hydroprocessing
    • Feed Quality
    • Hydrocracking Catalyst

Submitter

  • Operator
  • Licensor
  • (-) Consultant
  • (-) Vendor

Year QA

  • 2019
  • 2010
  • 2008
Filters

(2010) Question 25: Besides high reactor temperatures and flow maldistribution, what are other causes of high gas and LPG yields in a hydrocracker have you experienced?

Hydrocrackers typically process heavy gas oils into distillate-range material. The gas oils are catalytically cracked at high pressures in the presence of hydrocracking catalyst and hydrogen. The reaction is exothermic and consumes a relatively large quantity of hydrogen. High gas and LPG yields would be generally undesirable in a properly operating hydrocracker.
Read more

(2010) Question 29: What technologies do you use for treating or recovering VOCs from small-scale truck loading terminals? Discuss the merits associated with each?

The three main VOC treating systems for small scale truck loading are vapor combustion system, flare gas recovery unit, and an adsorption/absorption vapor recovery system.
Read more

(2010) Question 33: How do refiners avoid De-isobutanizer (DIB) column/reboiler fouling in sulfuric acid alkylation? What process conditions on the column do you use to detect this fouling? What process modifications do you take to minimize the impact of this fouling?

Fouling in the DIB column is almost always caused by salt deposits. These salts are typically sodium sulfate and sodium sulfite but can also contain calcium or magnesium if the effluent treating water is not demineralized. If these water-soluble salts are present in the DIB feed, the water will evaporate once inside the column leaving the solids behind.
Read more

(2010) Question 36: What are the best practices for maximizing catalyst run length in NHT units that are limited by reactor pressure drop?

Marathon’s experience with NHT fouling has been primarily corrosion products from upstream units and oxygen related polymerization of the naphtha. The use of feed filters can help minimize the effects of corrosion products. Oxygen related polymerization has impacted our NHT units from air leakage across intermediate naphtha storage tank seals and in purchased naphtha.
Read more

(2010) Question 37: Silicon poisoning of NHT catalysts has been observed in refineries without coking units. In your experience, what are the potential sources of silicon and what are the best practices to manage risk of such poisoning?

Marathon has had to deal with issues of non-coker silicon in naphtha’s since at least 2001. For background purposes, it is Marathon’s experience that silicon blocks the pores on hydrotreating catalyst and can impact catalyst activity. In severe cases, silicon breaks through to the reforming catalyst can occur where it can form silicon dioxide during the regeneration process which can cover the platinum sites.
Read more

(2010) Question 38: What measurements and criteria do you use to decide when to change your gas and liquid chloride absorber material? How do you determine the selection of absorber material?

For both gas and liquid service, Chevron monitors the inlet HCL/Total Chloride and replaces the adsorbent/molecular sieve based on material balance loading of chloride on the adsorber media. Chevron does monitor adsorbent outlet HCL/Total Chlorides, but as a best practice will change the adsorbent material before vendor maximum loading if breakthrough has not occurred.
Read more

(2010) Question 39: With lower severity requirements due to ethanol blending and corresponding reduced coke make in the reformer, what changes are you making in regards to reformer operation? What opportunities does this evolution present for both CCR and semi-regen units?

Increased ethanol blending has reduced the severity of the reformers on average 2 octane numbers. This has increased reformate yield and decreased hydrogen production. Although the octane boost realized by ethanol blending reduces overall pool octane requirements, minimum reformer severity may be dictated by octane requirements of premium gasoline grades, or by refinery hydrogen requirements.
Read more

(2010) Question 40: Has anyone experienced high chloride levels in off gases from the lock hopper of a pressurized regenerator? What are the consequences of the high levels (i.e. fouled burner tips)? What are ways to mitigate the problem?

Marathon has not experienced any high hydrogen chloride concentrations in Lock Hopper off gases from the two CycleMax regenerators that we operate. We have also not experienced problems with fouled burner tips due to high hydrogen chloride in the fuel gas to a heater.
Read more

(2010) Question 41: Do you have any experience with plugging of chloriding agent injection points in regenerators? How has this been overcome?

The chloride injection line has a nitrogen purge connected with the intent to sweep the chloride into the chlorination gas line. In most designs, the nitrogen and organic chloride line join together before the chloride on/off valve. When the chloride valve closes, both chloride and nitrogen sweep are stopped.
Read more

(2010) Question 42: In your experience, what are the typical causes of damage to the top of the regenerator inner screen?

The typical cause for damage in the top 2-3 ft of inner screen is metal fatigue due to thermal cycling.
Read more

Pagination

  • First page
  • Previous page ‹‹
  • …
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Current page 15
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • …
  • Next page ››
  • Last page

Data & Reports

  • Data & Statistics
  • Publications
  • Technical Papers
  • Annual Report
  • Sustainability Report

Stay in the Know

Subscribe to our monthly industry insights newsletter.

Footer menu (first)

  • My AFPM
  • Events
  • Safety Portal
  • Petrochemical Portal

Footer menu (second)

  • Contact Us
  • Privacy Policy
  • Legal

Connect with Us

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

© 2025 AFPM. All rights reserved 
American Fuel & Petrochemical Manufacturers
1800 M Street, NW Suite 900 North
Washington, DC 20036

Back to Top