Skip to main content
Home Home

Main navigation

  • Industries
    • Products
    • Operations
    • Performance
    • People
    • Contributions

    Industries

    We represent the makers of the fuels that keep Americans moving and the petrochemicals that are the essential building blocks for modern life. Our industries make life better, safer, more productive and — most of all — possible.

  • Issues
    • Fuels & Vehicles
    • Environment
    • Petrochemicals
    • Safety & Health
    • Security
    • Tax & Trade
    • Transportation & Infrastructure
    • Regulatory Reform

    Issues

    We advocate for public policies that promote growth and investment in the refining and petrochemical manufacturing industries to help drive our economy, add jobs, increase energy security and remain competitive in a global economy.

  • Events
    • My Meetings
    • Speaker Guidelines
    • Meeting FAQ
    • Sponsorship
    • Upcoming Events

    View AFPM Calendar of Events

    We offer a portfolio of first-in-class events that educate our members and other stakeholders on critical technical and advocacy issues, supporting the safety, security and success of the fuel and petrochemical industries.

     

  • Newsroom
  • Search
    Enter a list of keywords and press Enter to submit your search query.

Utility Menu (Mobile)

  • About Us
  • Membership
  • Data & Reports
  • Safety Programs

User account menu

  • My AFPM

Social Media Menu - Header

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

Utility Menu

  • About Us
    • About AFPM
    • Our History
    • Careers
    • Contact Us
  • Membership
    • AFPM Membership
    • Member Directory
  • Data & Reports
    • Data & Statistics
    • Publications
    • Technical Papers
    • Annual Report
    • Sustainability Report
  • Safety Programs
    • Safety Portal
    • Advancing Process Safety Programs
    • Occupational Safety Programs
    • Safety Statistics Programs
    • Safety Awards & Recognition
Enter a list of keywords and press Enter to submit your search query.

Q&A

Find the answer to your technical question in AFPM's extensive Q&A database.

wave
  1. Data & Reports
  2. Technical Papers
  3. Q&A

Q&A

These digital transcripts are meant to share information on process safety practices in order to help improve process safety performance and awareness throughout industry. The goal is to capture and share knowledge that could be used by other companies or sites when developing new process safety practices or improving existing ones. The documents being shared have been used by an industry member, but this does not mean it should be used or that it will produce similar results at any other site. Rather, it is an option to consider when implementing or adjusting programs and practices at a site. ​

BY THEMSELVES, THESE DIGITAL TRANSCRIPTS ARE NOT STANDARDS OR RECOMMENDED PRACTICES. THEY ARE NOT INTENDED TO REPLACE SOUND ENGINEERING JUDGMENT. THEY DO NOT PRECLUDE THE USE OF ALTERNATIVE METHODS THAT COMPLY WITH LEGAL REQUIREMENTS. A SUBJECT MATTER EXPERT SHOULD BE CONSULTED PRIOR TO DETERMINING WHETHER A PRACTICE CAN BE USED IN ANY SPECIFIC SITUATION. 

​

Process

  • (-) FCC
    • Alkylation
    • Environmental
    • Catalysts
  • (-) Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD
  • Gasoline Processing
    • Safety
    • Gasoline Processing
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • Crude/Coking
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Coker
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • CAT POLY Units (CAT Poly)
    • Desalting
    • Naphtha Hydrotreating
    • Safety

Submitter

  • Operator
  • Licensor
  • Consultant
  • Vendor

Year QA

  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2008
Search Filters

Process

  • (-) FCC
    • Alkylation
    • Environmental
    • Catalysts
  • (-) Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD
  • Gasoline Processing
    • Safety
    • Gasoline Processing
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • Crude/Coking
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Coker
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • CAT POLY Units (CAT Poly)
    • Desalting
    • Naphtha Hydrotreating
    • Safety

Submitter

  • Operator
  • Licensor
  • Consultant
  • Vendor

Year QA

  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2008
Filters

(2013) Question 99: Tight oil-derived FCC feeds are known to contain high levels of contaminant iron (Fe) and calcium (Ca). What catalyst design features are important for minimizing their effects? What level of these contaminants can be tolerated? What lab procedures can accurately simulate Fe and Ca contamination?

There are a lot of parts to this question, so I will respond to them independently. One of the catalyst design features that is important in any kind of feed, when you are going to get high iron and high calcium, is in the porosity. We talked a little before about how these contaminant metals tend to form these eutectics which can melt the surface of the catalyst and close off the pores.
Read more

(2013) Question 100: What specific changes in yields and product qualities might be expected when processing large percentages of tight oil-derived feeds? What operational changes can be made to address any problems created by these effects?

We are currently running varying degrees of tight oil at the majority or our refineries. At the refineries that are running a larger percentage of tight oil, the largest field impacts we have identified have been the shift to lighter products. At the same time, it insignificantly increased volume gains and significantly decreased slurry yield.
Read more

(2017) Question 28: Under what conditions will you strip sulfur from hydrotreating/hydrocracking catalysts?

Base-metal hydrotreating and hydrocracking catalysts are susceptible to sulfur stripping at high temperature in the presence of flowing hydrogen and in the absence of H2S. For that reason, we advise unit operators to avoid prolonged exposure of sulfided catalysts to flowing hydrogen at temperatures exceeding 500°F if the H2S content of the hydrogen is below 50 ppmv (parts per million by volume).
Read more

(2017) Question 29: What is the impact of processing unconverted oil (UCO) from a high conversion hydrocracker on the following downstream units: FCC, coker, base-oil unit, and lubes hydrocracker?

What is the impact of processing unconverted oil (UCO) from a high conversion hydrocracker on the following downstream units: FCC, coker, base-oil unit, and lubes hydrocracker?
Read more

(2017) Question 30: What are common mechanical defects that occur to the weld overlay material in hydroprocessing reactors? What are the most common locations for defects, and does the location play a factor in the mechanical integrity of the equipment? How do you detect and repair the defects? How often do you conduct Remaining Life Analysis (RLA) and/or Fit For Service (FFS) Assessment on critical equipment?

The common mechanical defects that occur are disbonding and cracking. Non-vanadium-modified 2¼ Cr-1 Mo material is more susceptible to disbonding than vanadium-modified 2¼ Cr-1 Mo-V material. V-modified 2¼ Cr-1 Mo has a much higher solubility of hydrogen compared to conventional 2¼ Cr -1 Mo. 
Read more

(2017) Question 31: What are the potential impacts to hydrocracking units [i.e., deactivation rate, HPNA (heavy polynuclear aromatics) formation, etc.] as heavy coker gasoil (HCGO) rate/endpoint are increased?

Processing heavier and cracked feedstocks poses many challenges to the hydrocracking unit. Thermally-cracked feedstock such as HCGO, apart from being unsaturated, has relatively lower API, higher sulfur, and nitrogen content, higher proportion of C7 insoluble, and Conradson carbon residue (CCR). An increase in the HCGO distillation endpoint results in a significant increase in the proportion of polynuclear aromatics (PNA) and asphaltenes, both of which are coke precursors, which results in an exponential increase in catalyst deactivation rates. 
Read more

(2017) Question 32: A) What are the variations of target efficiency that can be achieved in hydrogen plant operation? B) What are the operational factors that impact efficiency?

When discussing efficiencies, it is important to define the plant efficiency term. In most cases, hydrogen plant efficiency is measured by calculating the energy [BTU/scf (British thermal unit/standard cubic foot)] required to generate product hydrogen.
Read more

(2010) Question 70: How can you minimize the possibility of ignition and fire in the structured packing of main fractionators after they are opened for maintenance? Do you use chemicals to improve this procedure?

Zyme-flow products have been used in our past FCC turnarounds to mitigate pyrophoric compounds as well as decrease the amount of time to hydrocarbon free the main fractionator and associated pumparound circuits.
Read more

(2010) Question 71: For the main column, "tri lines" can be utilized to monitor bottoms level. When other level instruments are being verified or have failed, what are the best operating and safety practices being employed to verify the level? What do refiners use to monitor and control level in the bottom of the main column?

For the main column, "tri lines" can be utilized to monitor bottoms level. When other level instruments are being verified or have failed, what are the best operating and safety practices being employed to verify the level? What do refiners use to monitor and control level in the bottom of the main column?
Read more

(2010) Question 72: With advance controls on the FCCU and gas plants, what are refiners doing to train new operators and keep their experienced operators sharp and ready to handle FCCU upsets and emergencies? Are refiners using simulators to help with the training and retraining?

Sunoco employs Dynamic Matrix Control (DMC) on all the FCC gas plants and DMC on reactor and regenerator systems. One FCC has a complete process training simulator, and we are in the process of installing simulators on all of our FCC’s.
Read more

Pagination

  • First page
  • Previous page ‹‹
  • …
  • Page 65
  • Page 66
  • Page 67
  • Page 68
  • Current page 69
  • Page 70
  • Page 71
  • Page 72
  • Page 73
  • …
  • Next page ››
  • Last page

Data & Reports

  • Data & Statistics
  • Publications
  • Technical Papers
  • Annual Report
  • Sustainability Report

Stay in the Know

Subscribe to our monthly industry insights newsletter.

Footer menu (first)

  • My AFPM
  • Events
  • Safety Portal
  • Petrochemical Portal

Footer menu (second)

  • Contact Us
  • Privacy Policy
  • Legal

Connect with Us

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

© 2025 AFPM. All rights reserved 
American Fuel & Petrochemical Manufacturers
1800 M Street, NW Suite 900 North
Washington, DC 20036

Back to Top