Skip to main content
Home Home

Main navigation

  • Industries
    • Products
    • Operations
    • Performance
    • People
    • Contributions

    Industries

    We represent the makers of the fuels that keep Americans moving and the petrochemicals that are the essential building blocks for modern life. Our industries make life better, safer, more productive and — most of all — possible.

  • Issues
    • Fuels & Vehicles
    • Environment
    • Petrochemicals
    • Safety & Health
    • Security
    • Tax & Trade
    • Transportation & Infrastructure
    • Regulatory Reform

    Issues

    We advocate for public policies that promote growth and investment in the refining and petrochemical manufacturing industries to help drive our economy, add jobs, increase energy security and remain competitive in a global economy.

  • Events
    • My Meetings
    • Speaker Guidelines
    • Meeting FAQ
    • Sponsorship
    • Upcoming Events

    View AFPM Calendar of Events

    We offer a portfolio of first-in-class events that educate our members and other stakeholders on critical technical and advocacy issues, supporting the safety, security and success of the fuel and petrochemical industries.

     

  • Newsroom
  • Search
    Enter a list of keywords and press Enter to submit your search query.

Utility Menu (Mobile)

  • About Us
  • Membership
  • Data & Reports
  • Safety Programs

User account menu

  • My AFPM

Social Media Menu - Header

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

Utility Menu

  • About Us
    • About AFPM
    • Our History
    • Careers
    • Contact Us
  • Membership
    • AFPM Membership
    • Member Directory
  • Data & Reports
    • Data & Statistics
    • Publications
    • Technical Papers
    • Annual Report
    • Sustainability Report
  • Safety Programs
    • Safety Portal
    • Advancing Process Safety Programs
    • Occupational Safety Programs
    • Safety Statistics Programs
    • Safety Awards & Recognition
Enter a list of keywords and press Enter to submit your search query.

Q&A

Find the answer to your technical question in AFPM's extensive Q&A database.

wave
  1. Data & Reports
  2. Technical Papers
  3. Q&A

Q&A

These digital transcripts are meant to share information on process safety practices in order to help improve process safety performance and awareness throughout industry. The goal is to capture and share knowledge that could be used by other companies or sites when developing new process safety practices or improving existing ones. The documents being shared have been used by an industry member, but this does not mean it should be used or that it will produce similar results at any other site. Rather, it is an option to consider when implementing or adjusting programs and practices at a site. ​

BY THEMSELVES, THESE DIGITAL TRANSCRIPTS ARE NOT STANDARDS OR RECOMMENDED PRACTICES. THEY ARE NOT INTENDED TO REPLACE SOUND ENGINEERING JUDGMENT. THEY DO NOT PRECLUDE THE USE OF ALTERNATIVE METHODS THAT COMPLY WITH LEGAL REQUIREMENTS. A SUBJECT MATTER EXPERT SHOULD BE CONSULTED PRIOR TO DETERMINING WHETHER A PRACTICE CAN BE USED IN ANY SPECIFIC SITUATION. 

​

Process

  • Gasoline Processing
    • Safety
    • Gasoline Processing
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • FCC
    • Alkylation
    • Environmental
    • Catalysts
  • Crude/Coking
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Coker
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • CAT POLY Units (CAT Poly)
    • Desalting
    • Naphtha Hydrotreating
    • Safety
  • Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD

Submitter

  • Operator
  • Licensor
  • Consultant
  • Vendor

Year QA

  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2008
Search Filters

Process

  • Gasoline Processing
    • Safety
    • Gasoline Processing
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • FCC
    • Alkylation
    • Environmental
    • Catalysts
  • Crude/Coking
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Coker
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • CAT POLY Units (CAT Poly)
    • Desalting
    • Naphtha Hydrotreating
    • Safety
  • Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD

Submitter

  • Operator
  • Licensor
  • Consultant
  • Vendor

Year QA

  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2008
Filters

(2012) Question 40: What process options are available for U.S. refiners to economically make 10 ppm sulfur gasoline? Discuss impacts to other product qualities (such as octane and vapor pressure) and how these secondary effects impact the gasoline pool.

There are several routes to Tier 3 gasoline: post-treating, pre-treating, or a combination of the two.
Read more

(2012) Question 41: Have the panel members considered 15% ethanol (E15) gasoline blending?

My first slide shows a little background. The EPA administers the Renewable Fuel Standard program that has volume requirements for renewable fuels.
Read more

(2012) Question 42: What options are available to produce on-spec jet fuel from high total acid number (TAN) sources? What impacts these choices?

Regarding the conventional hydrotreating, I do not think high TAN would be an issue; but if you try to caustic-treat high TAN material, you will end up with what amounts to be the equivalent of lye soap. So anywhere you want oil and water separation to take place, the soap components may cause rag layers and carryover.
Read more

(2012) Question 43: In reforming units, what equipment could be susceptible to high temperature hydrogen attack (HTHA)? How are panelists approaching evaluation and replacement of equipment that could be susceptible to HTHA?

First, a little background: API 941 discusses high temperature hydrogen attack. At low temperatures, less than about 430°F, carbon steel has been used successfully up to 10,000 psi. But with elevated temperatures, the molecular hydrogen will dissociate into atomic hydrogen, which can readily enter and diffuse into the steel.
Read more

Question 44: How is coke on catalyst in fixed-bed and moving-bed reforming units tracked? How is this data used to adjust the reactor inlet temperatures in order to maintain constant product octane?

In our cyclic units, just based on the air consumption, we can measure the coke each time a reactor comes out for a regen. We are not grabbing samples. Our experience with the cyclics is that if you get up around 8% coke on catalyst, the unit will be pushed a little too hard. You will then need to think about backing it down on feed rate octane, finding a better-quality feed, or possibly increasing the hydrogen/oil ratio.
Read more

(2012) Question 45: What is the maximum allowable limit for the iron content of a reforming catalyst? Is this limit the same for semi-regenerative and continuously-regenerative catalysts?

We have seen that the maximum allowable iron on catalyst cannot be reduced to a simple number. Historically, about 3,000 wppm is the level at which we see yield start to suffer, but not every wppm of iron has the same impact on the unit. Iron deposited on the surface of the catalyst, usually from corrosion-related byproducts, tends to have less of an impact on the overall performance.
Read more

(2012) Question 46: Are refiners modifying the operating conditions in reforming units, for example, chloride on catalyst, in order to capture margin differences between natural gas, used as fuel, and liquid products?

I will start with a bit of review of some reactions, and then I will get into a couple of examples of what we have done at HollyFrontier. Of course, the downside to reforming is that the liquid product has less volume than the feed to the unit due to physical laws inherent to the chemical reactions. First, the high-octane product will have a higher density than the feed; and second, some portion of the feed will be cracked to LPGs and fuel gas in the process.
Read more

(2012) Question 47: How often do you replace your reformer catalyst? What is monitored, and what triggers the replacement? How has the increased spread between natural gas prices and liquid product prices impacted these decisions?

HollyFrontier operates five semi-regen reformers and two CCRs. There has not been a specific effort to replace catalyst in order to take advantage of the higher liquid product yield that is possible with newer catalyst. However, the spread between natural gas and liquids certainly impacts the decision when looking to upgrade. For two of the semi-regen units, the most recent catalyst replacements were installed after approximately 20 regen cycles, which included multiple dumping and screening events.
Read more

(2012) Question 48: Discuss recent advances in reforming catalyst technology. What performance improvements are being researched?

The most current catalysts on the market are multi-promoted using a number of different promoters beyond the base platinum-rhenium or platinum-tin. It is not a one-size-fits-all market, so there are tailored designs for different needs. For CCRs, the current drive is for improved yields. Units are often octane-long. The goal is now to maximize barrels as best as we can.
Read more

Question 49: Does the panel have any experience using flexible thermocouples in the regeneration section of a moving-bed reforming unit? What considerations should be given to revamping units that do not have these installed?

Flexible thermocouples, as I understand, are now a part of the standard design for regenerators of moving-bed units. At a refinery in which I worked; we replaced the original slider thermocouples with multipoint thermocouples.
Read more

Pagination

  • First page
  • Previous page ‹‹
  • …
  • Page 92
  • Page 93
  • Page 94
  • Page 95
  • Current page 96
  • Page 97
  • Page 98
  • Page 99
  • Page 100
  • …
  • Next page ››
  • Last page

Data & Reports

  • Data & Statistics
  • Publications
  • Technical Papers
  • Annual Report
  • Sustainability Report

Stay in the Know

Subscribe to our monthly industry insights newsletter.

Footer menu (first)

  • My AFPM
  • Events
  • Safety Portal
  • Petrochemical Portal

Footer menu (second)

  • Contact Us
  • Privacy Policy
  • Legal

Connect with Us

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

© 2025 AFPM. All rights reserved 
American Fuel & Petrochemical Manufacturers
1800 M Street, NW Suite 900 North
Washington, DC 20036

Back to Top