Skip to main content
Home Home

Main navigation

  • Industries
    • Products
    • Operations
    • Performance
    • People
    • Contributions

    Industries

    We represent the makers of the fuels that keep Americans moving and the petrochemicals that are the essential building blocks for modern life. Our industries make life better, safer, more productive and — most of all — possible.

  • Issues
    • Fuels & Vehicles
    • Environment
    • Petrochemicals
    • Safety & Health
    • Security
    • Tax & Trade
    • Transportation & Infrastructure
    • Regulatory Reform

    Issues

    We advocate for public policies that promote growth and investment in the refining and petrochemical manufacturing industries to help drive our economy, add jobs, increase energy security and remain competitive in a global economy.

  • Events
    • My Meetings
    • Speaker Guidelines
    • Meeting FAQ
    • Sponsorship
    • Upcoming Events

    View AFPM Calendar of Events

    We offer a portfolio of first-in-class events that educate our members and other stakeholders on critical technical and advocacy issues, supporting the safety, security and success of the fuel and petrochemical industries.

     

  • Newsroom
  • Search
    Enter a list of keywords and press Enter to submit your search query.

Utility Menu (Mobile)

  • About Us
  • Membership
  • Data & Reports
  • Safety Programs

User account menu

  • My AFPM

Social Media Menu - Header

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

Utility Menu

  • About Us
    • About AFPM
    • Our History
    • Careers
    • Contact Us
  • Membership
    • AFPM Membership
    • Member Directory
  • Data & Reports
    • Data & Statistics
    • Publications
    • Technical Papers
    • Annual Report
    • Sustainability Report
  • Safety Programs
    • Safety Portal
    • Advancing Process Safety Programs
    • Occupational Safety Programs
    • Safety Statistics Programs
    • Safety Awards & Recognition
Enter a list of keywords and press Enter to submit your search query.

Q&A

Find the answer to your technical question in AFPM's extensive Q&A database.

wave
  1. Data & Reports
  2. Technical Papers
  3. Q&A

Q&A

These digital transcripts are meant to share information on process safety practices in order to help improve process safety performance and awareness throughout industry. The goal is to capture and share knowledge that could be used by other companies or sites when developing new process safety practices or improving existing ones. The documents being shared have been used by an industry member, but this does not mean it should be used or that it will produce similar results at any other site. Rather, it is an option to consider when implementing or adjusting programs and practices at a site. ​

BY THEMSELVES, THESE DIGITAL TRANSCRIPTS ARE NOT STANDARDS OR RECOMMENDED PRACTICES. THEY ARE NOT INTENDED TO REPLACE SOUND ENGINEERING JUDGMENT. THEY DO NOT PRECLUDE THE USE OF ALTERNATIVE METHODS THAT COMPLY WITH LEGAL REQUIREMENTS. A SUBJECT MATTER EXPERT SHOULD BE CONSULTED PRIOR TO DETERMINING WHETHER A PRACTICE CAN BE USED IN ANY SPECIFIC SITUATION. 

​

Process

  • Gasoline Processing
    • Safety
    • Gasoline Processing
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • FCC
    • Alkylation
    • Environmental
    • Catalysts
  • Crude/Coking
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Coker
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • CAT POLY Units (CAT Poly)
    • Desalting
    • Naphtha Hydrotreating
    • Safety
  • Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD

Submitter

  • Operator
  • Licensor
  • Consultant
  • Vendor

Year QA

  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2008
Search Filters

Process

  • Gasoline Processing
    • Safety
    • Gasoline Processing
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • FCC
    • Alkylation
    • Environmental
    • Catalysts
  • Crude/Coking
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Coker
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • CAT POLY Units (CAT Poly)
    • Desalting
    • Naphtha Hydrotreating
    • Safety
  • Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD

Submitter

  • Operator
  • Licensor
  • Consultant
  • Vendor

Year QA

  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2008
Filters

(2013) Question 24: For refiners who have naphtha splitter columns, either upstream or downstream of a hydrotreater, how many of these towers experience overhead corrosion issues? Has oxygen played a role in any experienced corrosion? What solutions exist to mitigate the issues?

As a preface to my answer, I thought it important to define what we see as a splitter versus a stripper. To us, a naphtha splitter is a simple fractionator vessel. It takes naphtha and separates it into a light fraction that goes to gasoline blending and a bottom, heavier fraction that goes to catalytic reforming.
Read more

(2013) Question 25: What issues are encountered when introducing cracked naphthas into units that were not originally designed for the higher olefin content? What other contaminants should be considered when making this change in operation, e.g., silicon, nitrogen, and sulfur?

There are many potential issues. The single most obvious one is the heat released due to the olefins. You must make sure you can handle the heat release without coking up the reactor. You also have a higher risk of furnace fouling or coking in the furnace.
Read more

(2013) Question 26: How will the ISO 8217 Marine Fuel Oil Hydrogen Sulfide (H2S) specification (less than 2 ppm H2S in the liquid phase) affect refiners? Do any refiners plan to implement the standard, and what procedural or equipment changes are likely needed in order to meet the specification?

Simply put, refiners will be required to meet the ISO 8217 2 ppm H2S specification if they are going to sell fuel oil to customers who have requirements to meet this specification. ISO 8217 is a fuel specification, not a regulation. A regulation is enforced by some regulatory organization.
Read more

(2013) Question 27: What options are refiners considering addressing upcoming Tier 3 Fuel Standards [10 wppm (weight parts per billion) annual average sulfur in gasoline]?

Tier 3 fuel is lowering sulfur yet again in gasoline. The crude oil sulfurs have been coming down also with the tight oil, so some people have asked the question: Is processing more tight oil actually going to get us on-spec on Tier 3? The answer is no, not really. It is not going to have that significant of an impact on your gasoline sulfurs, obviously, without other processing.
Read more

(2013) Question 28: Is the changing quantity of pentanes and pentenes in refinery streams and tightening gasoline regulations leading to operators considering different processing strategies in order to maintain gasoline blend pool specifications? Comment on increased pentene alkylation, decreased pentane isomerization, or other disposition sources.

The pentenes, also called amylenes, can be fed to the alkylation unit and be alkylated. However, you make a lot of ASO (acid-soluble oil) and the yield is not that great; so, most people prefer not to do it. We do not alkylate our amylenes at the moment.
Read more

(2013) Question 29: What are the industry practices to take samples around high-pressure equipment which contain light hydrocarbon and H2S? How do you ensure the samples are handled safely and representative of sample stream?

Our Corpus Christi and Pine Bend refineries had standardized on Texas Sampling Incorporated samplers. They provide a variety of closed loop captured sample systems. We have a Sampler Selection Procedure Flowchart that helps us walk through ‘yes’ or ‘no’ decisions considering high RVP (Reid vapor pressure) material, high-pressure material, high temperature material, high H2S (hydrogen sulfide) options, and plugging potential.
Read more

(2013) Question 30: What are your design practices for reactor skin thermocouple requirements in a hydrotreater and a hydrocracker for startups and safe operation?

Our minimal requirement for a hydrotreater is three skin thermocouples at the top and bottom heads of the reactors and a full skin thermocouple at the bottom shell of the reactor just about at the tangent line. The option now is a full skin thermocouple at the top of the shell and the middle of the shell.
Read more

(2013) Question 31: What is the threshold concentration of arsenic and phosphorus requiring a dedicated trap system? How are the arsenic and phosphorus trap systems specified,and what are the controlling mechanisms?

Arsenic is a big concern because it is a permanent poison that causes fairly significant activity. We generally see around a 60° Floss per weight percent pickup; so, you will want to pay attention to it. As a side note, it is also common in most fractions of hydrotreating: so anything from naphtha to heavy gas oil.
Read more

(2013) Question 32: What is a typical range of HDM (hydrodemetallization; metals removal) in a gas oil hydrotreater? Can HDM decline rapidly when metals in the feed become excessive relative to catalyst system design? Is there a point when metals in the feed are so high that they “overwhelm” the demet (demetallization) and main bed catalyst, resulting in lower percent of HDM?

Nickel and vanadium contamination generally come in heavy gas oils and resid hydrotreating. It is obviously not very common in diesels and light feeds. We see that it is about a 5°F to 9°F loss per weight percent combined pickup. The reason you will want to pay attention to these metals is because of their ability to actually diffuse onto the catalyst, so you will need a space to deposit them.
Read more

(2013) Question 33: What is the philosophy or criteria for optimizing catalyst bed grading material to prevent high reactor pressure drop from feed containing significant amounts of Fe (iron)?

Certainly, identifying the sources of the iron coming in – whether organic, iron oxides, iron sulfides, or just scale from tanks – is very critical to understanding your best strategy for mitigating pressure drop. Ultimately, when you form iron sulfide, it creates deposits on the bed and coke deposition, and certainly leads to reduced catalyst life.
Read more

Pagination

  • First page
  • Previous page ‹‹
  • …
  • Page 174
  • Page 175
  • Page 176
  • Page 177
  • Current page 178
  • Page 179
  • Page 180
  • Page 181
  • Page 182
  • …
  • Next page ››
  • Last page

Data & Reports

  • Data & Statistics
  • Publications
  • Technical Papers
  • Annual Report
  • Sustainability Report

Stay in the Know

Subscribe to our monthly industry insights newsletter.

Footer menu (first)

  • My AFPM
  • Events
  • Safety Portal
  • Petrochemical Portal

Footer menu (second)

  • Contact Us
  • Privacy Policy
  • Legal

Connect with Us

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

© 2025 AFPM. All rights reserved 
American Fuel & Petrochemical Manufacturers
1800 M Street, NW Suite 900 North
Washington, DC 20036

Back to Top