Skip to main content
Home Home

Main navigation

  • Industries
    • Products
    • Operations
    • Performance
    • People
    • Contributions

    Industries

    We represent the makers of the fuels that keep Americans moving and the petrochemicals that are the essential building blocks for modern life. Our industries make life better, safer, more productive and — most of all — possible.

  • Issues
    • Fuels & Vehicles
    • Environment
    • Petrochemicals
    • Safety & Health
    • Security
    • Tax & Trade
    • Transportation & Infrastructure
    • Regulatory Reform

    Issues

    We advocate for public policies that promote growth and investment in the refining and petrochemical manufacturing industries to help drive our economy, add jobs, increase energy security and remain competitive in a global economy.

  • Events
    • My Meetings
    • Speaker Guidelines
    • Meeting FAQ
    • Sponsorship
    • Upcoming Events

    View AFPM Calendar of Events

    We offer a portfolio of first-in-class events that educate our members and other stakeholders on critical technical and advocacy issues, supporting the safety, security and success of the fuel and petrochemical industries.

     

  • Newsroom
  • Search
    Enter a list of keywords and press Enter to submit your search query.

Utility Menu (Mobile)

  • About Us
  • Membership
  • Data & Reports
  • Safety Programs

User account menu

  • My AFPM

Social Media Menu - Header

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

Utility Menu

  • About Us
    • About AFPM
    • Our History
    • Careers
    • Contact Us
  • Membership
    • AFPM Membership
    • Member Directory
  • Data & Reports
    • Data & Statistics
    • Publications
    • Technical Papers
    • Annual Report
    • Sustainability Report
  • Safety Programs
    • Safety Portal
    • Advancing Process Safety Programs
    • Occupational Safety Programs
    • Safety Statistics Programs
    • Safety Awards & Recognition
Enter a list of keywords and press Enter to submit your search query.

Q&A

Find the answer to your technical question in AFPM's extensive Q&A database.

wave
  1. Data & Reports
  2. Technical Papers
  3. Q&A

Q&A

These digital transcripts are meant to share information on process safety practices in order to help improve process safety performance and awareness throughout industry. The goal is to capture and share knowledge that could be used by other companies or sites when developing new process safety practices or improving existing ones. The documents being shared have been used by an industry member, but this does not mean it should be used or that it will produce similar results at any other site. Rather, it is an option to consider when implementing or adjusting programs and practices at a site. ​

BY THEMSELVES, THESE DIGITAL TRANSCRIPTS ARE NOT STANDARDS OR RECOMMENDED PRACTICES. THEY ARE NOT INTENDED TO REPLACE SOUND ENGINEERING JUDGMENT. THEY DO NOT PRECLUDE THE USE OF ALTERNATIVE METHODS THAT COMPLY WITH LEGAL REQUIREMENTS. A SUBJECT MATTER EXPERT SHOULD BE CONSULTED PRIOR TO DETERMINING WHETHER A PRACTICE CAN BE USED IN ANY SPECIFIC SITUATION. 

​

Process

  • Gasoline Processing
    • Safety
    • Gasoline Processing
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • FCC
    • Alkylation
    • Environmental
    • Catalysts
  • Crude/Coking
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Coker
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • CAT POLY Units (CAT Poly)
    • Desalting
    • Naphtha Hydrotreating
    • Safety
  • Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD

Year QA

  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2008
Search Filters

Process

  • Gasoline Processing
    • Safety
    • Gasoline Processing
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • FCC
    • Alkylation
    • Environmental
    • Catalysts
  • Crude/Coking
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Coker
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • CAT POLY Units (CAT Poly)
    • Desalting
    • Naphtha Hydrotreating
    • Safety
  • Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD

Year QA

  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2008
Filters

Question 9: Are there specific lab studies or commercial examples regarding the effect of regenerator temperature on catalyst deactivation and particle integrity, specifically attrition properties, apparent bulk density, and morphology?

There is a very definite correlation between activity degradation and regenerative temperature. Some catalysts are more susceptible to thermal deactivation depending on the technology and the poor architecture used.
Read more

Question 10: What is your recent experience regarding the maximum level of equilibrium catalyst metals (Ni, V, Na, Fe, Ca) in FCC units processing residual feedstocks? Have there been any recent improvements in vanadium passivation technologies? At nickel levels approaching 10,000 ppm, have you experienced increased catalyst deactivation as evidenced by lower equilibrium zeolite surface area?

Here we see data regarding one of our FCCUs that operates at e-cat nickel levels exceeding 10,000 ppm. We observe that the MAT generally remains within the same range until high e-cat nickel concentrations are approached.
Read more

Question 37: What is the impact of CO (carbon monoxide) and/or CO2 (carbon dioxide) on noble metal catalyst performance?

CO and CO2are poisons for noble metal catalysts, with CO being a very strong poison. Contamination level as low as 50 to 100 ppm can result in significant and permanent loss of activity. CO should be limited to less than 10 ppm. In our experience, units which achieve long cycles (10 years plus) typically have CO levels less than 5 ppm.
Read more

Question 6: Do LTOs contain higher concentrations of nitrogen? If so, how has this higher concentration effected gasoline processing units?

The LTOs generally do not contain a higher concentration of nitrogen. LTOs are typically characterized as light, sweet, low-sulfur, low-nitrogen crudes. For example, the Eagle Ford and the Bakken nitrogen typically contains less than 2 ppm. Nonetheless, the gasoline processing units are impacted when refineries process higher percentage of the LTOs because of the crudes.
Read more

Question 2: What are the operating constraints in co-processing coker naphtha in a ULSD (ultra-low sulfur diesel) and/or a gas oil hydrotreater unit?

There are some constraints relative to processing coker naphtha. I have outlined a few of them on the slide. Key with coker naphtha are the changes in the process chemistry that occur starting, perhaps, with the dilution of the hydrogen partial pressure due to the vaporization of the naphtha.
Read more

Question 79: What tools are being used to monitor FCC performance? What are the key performance indicators and expectations?

These are two broad categories for the use of these indicators. The first category is capacity utilization and yield performance, which covers process performance, operating constraints, and optimal use of any inherent design margins.
Read more

Question 86: What test method (e.g., ASTM D86, D1160, or D2887) do you currently use to determine the distillation of FCC gasolines, cycle oils, and fractionator bottoms?

I put distillation methods into two different categories. One is simple distillation or acts of distillation, which is either a D86 or D1160. D86 is at atmospheric conditions; the D1160 would be at a vacuum.
Read more

Question 44: How is coke on catalyst in fixed-bed and moving-bed reforming units tracked? How is this data used to adjust the reactor inlet temperatures in order to maintain constant product octane?

In our cyclic units, just based on the air consumption, we can measure the coke each time a reactor comes out for a regen. We are not grabbing samples. Our experience with the cyclics is that if you get up around 8% coke on catalyst, the unit will be pushed a little too hard. You will then need to think about backing it down on feed rate octane, finding a better-quality feed, or possibly increasing the hydrogen/oil ratio.
Read more

Question 49: Does the panel have any experience using flexible thermocouples in the regeneration section of a moving-bed reforming unit? What considerations should be given to revamping units that do not have these installed?

Flexible thermocouples, as I understand, are now a part of the standard design for regenerators of moving-bed units. At a refinery in which I worked; we replaced the original slider thermocouples with multipoint thermocouples.
Read more

Question 28: What is the panel's experience in block mode operating between VGO and diesel modes? What is the frequency of change of mode and do they see any impact on catalyst activity after each switch?

While Suncor Energy, Inc. does not have any hydroprocessing units designed to routinely operate in block mode between VGO and diesel, at our Denver Refinery we have operated our ULSD unit in AGO/VGO service and routinely operate our gas oil unit in ULSD service for various reasons.
Read more

Pagination

  • First page
  • Previous page ‹‹
  • …
  • Page 175
  • Page 176
  • Page 177
  • Page 178
  • Page 179
  • Page 180
  • Page 181
  • Page 182
  • Current page 183

Data & Reports

  • Data & Statistics
  • Publications
  • Technical Papers
  • Annual Report
  • Sustainability Report

Stay in the Know

Subscribe to our monthly industry insights newsletter.

Footer menu (first)

  • My AFPM
  • Events
  • Safety Portal
  • Petrochemical Portal

Footer menu (second)

  • Contact Us
  • Privacy Policy
  • Legal

Connect with Us

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

© 2025 AFPM. All rights reserved 
American Fuel & Petrochemical Manufacturers
1800 M Street, NW Suite 900 North
Washington, DC 20036

Back to Top