Skip to main content
Home Home

Main navigation

  • Industries
    • Products
    • Operations
    • Performance
    • People
    • Contributions

    Industries

    We represent the makers of the fuels that keep Americans moving and the petrochemicals that are the essential building blocks for modern life. Our industries make life better, safer, more productive and — most of all — possible.

  • Issues
    • Fuels & Vehicles
    • Environment
    • Petrochemicals
    • Safety & Health
    • Security
    • Tax & Trade
    • Transportation & Infrastructure
    • Regulatory Reform

    Issues

    We advocate for public policies that promote growth and investment in the refining and petrochemical manufacturing industries to help drive our economy, add jobs, increase energy security and remain competitive in a global economy.

  • Events
    • My Meetings
    • Speaker Guidelines
    • Meeting FAQ
    • Sponsorship
    • Upcoming Events

    View AFPM Calendar of Events

    We offer a portfolio of first-in-class events that educate our members and other stakeholders on critical technical and advocacy issues, supporting the safety, security and success of the fuel and petrochemical industries.

     

  • Newsroom
  • Search
    Enter a list of keywords and press Enter to submit your search query.

Utility Menu (Mobile)

  • About Us
  • Membership
  • Data & Reports
  • Safety Programs

User account menu

  • My AFPM

Social Media Menu - Header

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

Utility Menu

  • About Us
    • About AFPM
    • Our History
    • Careers
    • Contact Us
  • Membership
    • AFPM Membership
    • Member Directory
  • Data & Reports
    • Data & Statistics
    • Publications
    • Technical Papers
    • Annual Report
    • Sustainability Report
  • Safety Programs
    • Safety Portal
    • Advancing Process Safety Programs
    • Occupational Safety Programs
    • Safety Statistics Programs
    • Safety Awards & Recognition
Enter a list of keywords and press Enter to submit your search query.

Q&A

Find the answer to your technical question in AFPM's extensive Q&A database.

wave
  1. Data & Reports
  2. Technical Papers
  3. Q&A

Q&A

These digital transcripts are meant to share information on process safety practices in order to help improve process safety performance and awareness throughout industry. The goal is to capture and share knowledge that could be used by other companies or sites when developing new process safety practices or improving existing ones. The documents being shared have been used by an industry member, but this does not mean it should be used or that it will produce similar results at any other site. Rather, it is an option to consider when implementing or adjusting programs and practices at a site. ​

BY THEMSELVES, THESE DIGITAL TRANSCRIPTS ARE NOT STANDARDS OR RECOMMENDED PRACTICES. THEY ARE NOT INTENDED TO REPLACE SOUND ENGINEERING JUDGMENT. THEY DO NOT PRECLUDE THE USE OF ALTERNATIVE METHODS THAT COMPLY WITH LEGAL REQUIREMENTS. A SUBJECT MATTER EXPERT SHOULD BE CONSULTED PRIOR TO DETERMINING WHETHER A PRACTICE CAN BE USED IN ANY SPECIFIC SITUATION. 

​

Process

  • Gasoline Processing
    • (-) Gasoline Processing
    • Safety
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • FCC
    • (-) Catalysts
    • Alkylation
    • Environmental
  • Crude/Coking
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Coker
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • CAT POLY Units (CAT Poly)
    • Desalting
    • Naphtha Hydrotreating
    • Safety
  • Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD

Submitter

  • Operator
  • Licensor
  • Consultant
  • Vendor

Year QA

  • 2019
  • 2016
  • 2012
  • 2011
  • 2010
  • 2008
Search Filters

Process

  • Gasoline Processing
    • (-) Gasoline Processing
    • Safety
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • FCC
    • (-) Catalysts
    • Alkylation
    • Environmental
  • Crude/Coking
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Coker
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • CAT POLY Units (CAT Poly)
    • Desalting
    • Naphtha Hydrotreating
    • Safety
  • Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD

Submitter

  • Operator
  • Licensor
  • Consultant
  • Vendor

Year QA

  • 2019
  • 2016
  • 2012
  • 2011
  • 2010
  • 2008
Filters

(2016) Question 25: For refinery complexes considering grassroots or brownfield expansion of gas oil conversion capacity, what are your typical capital expenditure (capex) costs and relative refinery margin improvement between FCC (fluid catalytic cracking) and hydrocracking? What are the key technology features that impact your economic decision? What are the crucial considerations that, if they include both technologies, to allow for future integration, especially around the changing gasoline/diese

In general, Marathon’s economic viewpoint is that hydrocrackers have better projected margins going forward than FCCUs, as they maximize higher valued ULSD over gasoline and have higher volume expansion (see Figure 1). This is driven by many factors mentioned in the primary response and is particularly attractive when ULSD is strong relative to gasoline and when natural gas or hydrogen) is inexpensive. Each company has a different viewpoint on this topic, so the opinion will vary somewhat across the industry.
Read more

(2010) Question 85: What is the typical range that you employ for iron content on FCC equilibrium catalyst? What methods are available to determine how iron is accumulated on the catalyst surface? How does the distribution of iron on the catalyst surface impact the FCC operation, yield structure and emissions?

There are several methods available to quantify iron contamination on catalyst. Scanning Electron Microscopy (SEM) pictures are a valuable means to qualitatively assess iron laydown morphology on the catalyst particle.
Read more

(2010) Question 86: In your experience, what are catalyst best practices to shift FCC yields rapidly between gasoline and diesel maximization and then back again? Many catalyst suppliers are recommending blended catalyst systems. Do you believe this catalyst/additive blending is the best approach?

Co-catalysts are a new product category providing the refiner with the flexibility to change the product slate of the FCC without changing the FCC catalyst. Changing between a maximum gasoline co-catalyst and a maximum LCO co-catalyst will allow the refiner to rapidly capture the most favorable economics at all times – maximizing FCC profitability. Co-catalysts are added to the base catalyst to rapidly change the core performance of the FCC.
Read more

(2010) Question 87: In your experience, how does catalyst activity affect the catalyst's coke selectivity and the FCCU's delta coke? How are the coke selectivity and delta coke related? Lastly, discuss how to determine the proper activity to maximize conversion.

When designing an FCC catalyst, one must consider coke selectivity, delta coke and total coke yield. Coke selectivity is the relative coke-making tendency of the catalyst, or in other words, a catalyst with good coke selectivity produces higher conversion per unit of coke make than the reference catalyst.
Read more

(2010) Question 21: Silica uptake on gas oil and diesel hydrotreating units is an increasing problem. In your experience, what is the source of silica in these feeds? Do you have effective ways to manage this silica?

The main source of silicon in Hydrotreaters is polysiloxane compounds (such as polydimethylsiloxane) used to control foaming in delayed coker units. It has also been reported that indigenous silicon is present in some heavy oils.
Read more

(2010) Question 22: In your experience, how are ULSD units maximizing catalyst life/ cycle length? Do you use feedstock or catalyst analysis to locate sources of contaminants, especially arsenic?

Many factors impact the cycle length in a ULSD unit, and in order to ensure the longest possible cycle length in such units it is important to: Have an optimal flow distribution and gas mixing using latest generation reactor internals designed for the actual operating conditions. This is very important in order to ensure maximum catalyst utilization with no channeling in the catalyst bed.
Read more

(2019) Question 8: Where is salt (NH4Cl or (NH4)2S) fouling most likely to occur? What are common practices for monitoring and mitigating?

ABIGAIL SLATER (HollyFrontier)
Salting typically occurs in the reactor effluent exchangers (shell and tube and fin fans), recycle and net gas compressors, and product stabilizer overhead system (top trays, overhead condenser, etc.). Common monitoring practices on exchangers and fin fans can be

Read more

(2019) Question 9: How do you track chloride in liquid/gas/LPG? What are your criteria for replacing adsorbent in chloride treaters?

DAVINDER MITTAL (HPCL Mittal Energy)
Chlorides have been a long standing issue in catalytic reformer operation. Until a few years ago, the focus on preventing operational problems from the chloride compounds in the catalytic reformer product stream was to remove HCl.  More recently, a growing

Read more

(2019) Question 10: What causes metal-catalyzed coking (MCC) that obstructs catalyst circulation in CCR reformers? What actions do you take to mitigate MCC formation?

BILL KOSTKA (AXENS NORTH AMERICA)
Metal-catalyzed coke (MCC) formation typically occurs on 3d valence transition metals such as iron and nickel.  Under CCR-like conditions of low hydrogen partial pressure (less than about 620 kpa), high temperature (more than about 480 °C) and low or stagnant flow

Read more

(2019) Question 11: Where are your liquid-phase chloride treaters installed for reforming units? What are the advantages of each location?

BILL KOSTKA (AXENS NORTH AMERICA)
Liquid-phase Cl treaters are typically used in three locations for reforming units.

Treating the unstabilzed reformate stream provides several advantages.  The stream is heated upstream of the stabilizer column which ensures that any ammonium chloride is

Read more

Pagination

  • First page
  • Previous page ‹‹
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Next page ››
  • Last page

Data & Reports

  • Data & Statistics
  • Publications
  • Technical Papers
  • Annual Report
  • Sustainability Report

Stay in the Know

Subscribe to our monthly industry insights newsletter.

Footer menu (first)

  • My AFPM
  • Events
  • Safety Portal
  • Petrochemical Portal

Footer menu (second)

  • Contact Us
  • Privacy Policy
  • Legal

Connect with Us

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

© 2025 AFPM. All rights reserved 
American Fuel & Petrochemical Manufacturers
1800 M Street, NW Suite 900 North
Washington, DC 20036

Back to Top