Skip to main content
Home Home

Main navigation

  • Industries
    • Products
    • Operations
    • Performance
    • People
    • Contributions

    Industries

    We represent the makers of the fuels that keep Americans moving and the petrochemicals that are the essential building blocks for modern life. Our industries make life better, safer, more productive and — most of all — possible.

  • Issues
    • Fuels & Vehicles
    • Environment
    • Petrochemicals
    • Safety & Health
    • Security
    • Tax & Trade
    • Transportation & Infrastructure
    • Regulatory Reform

    Issues

    We advocate for public policies that promote growth and investment in the refining and petrochemical manufacturing industries to help drive our economy, add jobs, increase energy security and remain competitive in a global economy.

  • Events
    • My Meetings
    • Speaker Guidelines
    • Meeting FAQ
    • Sponsorship
    • Upcoming Events

    View AFPM Calendar of Events

    We offer a portfolio of first-in-class events that educate our members and other stakeholders on critical technical and advocacy issues, supporting the safety, security and success of the fuel and petrochemical industries.

     

  • Newsroom
  • Search
    Enter a list of keywords and press Enter to submit your search query.

Utility Menu (Mobile)

  • About Us
  • Membership
  • Data & Reports
  • Safety Programs

User account menu

  • My AFPM

Social Media Menu - Header

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

Utility Menu

  • About Us
    • About AFPM
    • Our History
    • Careers
    • Contact Us
  • Membership
    • AFPM Membership
    • Member Directory
  • Data & Reports
    • Data & Statistics
    • Publications
    • Technical Papers
    • Annual Report
    • Sustainability Report
  • Safety Programs
    • Safety Portal
    • Advancing Process Safety Programs
    • Occupational Safety Programs
    • Safety Statistics Programs
    • Safety Awards & Recognition
Enter a list of keywords and press Enter to submit your search query.

Q&A

Find the answer to your technical question in AFPM's extensive Q&A database.

wave
  1. Data & Reports
  2. Technical Papers
  3. Q&A

Q&A

These digital transcripts are meant to share information on process safety practices in order to help improve process safety performance and awareness throughout industry. The goal is to capture and share knowledge that could be used by other companies or sites when developing new process safety practices or improving existing ones. The documents being shared have been used by an industry member, but this does not mean it should be used or that it will produce similar results at any other site. Rather, it is an option to consider when implementing or adjusting programs and practices at a site. ​

BY THEMSELVES, THESE DIGITAL TRANSCRIPTS ARE NOT STANDARDS OR RECOMMENDED PRACTICES. THEY ARE NOT INTENDED TO REPLACE SOUND ENGINEERING JUDGMENT. THEY DO NOT PRECLUDE THE USE OF ALTERNATIVE METHODS THAT COMPLY WITH LEGAL REQUIREMENTS. A SUBJECT MATTER EXPERT SHOULD BE CONSULTED PRIOR TO DETERMINING WHETHER A PRACTICE CAN BE USED IN ANY SPECIFIC SITUATION. 

​

Process

  • (-) Gasoline Processing
    • Safety
    • Gasoline Processing
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • FCC
    • Alkylation
    • Environmental
    • Catalysts
  • Crude/Coking
    • (-) Coker
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • CAT POLY Units (CAT Poly)
    • Desalting
    • Naphtha Hydrotreating
    • Safety
  • Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD

Year QA

  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2008
Show more
Search Filters

Process

  • (-) Gasoline Processing
    • Safety
    • Gasoline Processing
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • FCC
    • Alkylation
    • Environmental
    • Catalysts
  • Crude/Coking
    • (-) Coker
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • CAT POLY Units (CAT Poly)
    • Desalting
    • Naphtha Hydrotreating
    • Safety
  • Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD

Year QA

  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
  • 2008
Show more
Filters

(2016) Question 14: Do you have experience with CCR heel catalyst contaminating the circulating inventory during operation? How can this contamination be prevented?

The most common situation that results in the contamination of a catalyst load with heel catalyst occurs during a turnaround as a result of accidentally reloading drums of used catalyst that contain heel catalyst back into the reactors. This type of contamination occurs in one or two units every year.
Read more

(2016) Question 15: How do you remove the CCR heel catalyst from the unit during an outage and underwhat atmospheric conditions?

Catalyst unloading from a CCR Platforming™ reactor stack is done under nitrogen atmosphere using the normal catalyst transfer line under the catalyst collector. Typically, the last 10 to 15% of the catalyst unloaded will be contaminated with heel catalyst. This percentage may be higher if there has been damage to internals or blockage of catalyst transfer lines.
Read more

(2016) Question 16: What is your Best Practice for inspecting and preventing erosion in CCR lift lines?

In CCR Platforming™ units, the movement of catalyst through the lift pipe results in contact between the catalyst pills and the inner surface of the lift pipe.
Read more

(2016) Question 42: What are your typical H2S (hydrogen sulfide) detection and monitoring methods used on heavy oil fractions being transported via truck, rail, or barge? What are the mitigation options you employ?

We see typically dragger tube testing and head space H2S monitors being used. Mitigation is still done, for the most part, with chemical additives. The most commonly used additives are from the triazine family. As a result of the concerns that refiners have with some of the existing triazine and non-triazine (e.g., glyoxal) being used with respect to the impact on downstream equipment, Nalco Champion has developed both non-triazine, non-acidic (non-glyoxal), and low nitrogen alternative H2S scavengers.
Read more

(2016) Question 43: Have you experienced high corrosion rates in carbon steel piping in resid service operating below 500°F? Please comment on corrosion mechanisms.

High corrosion rates have been experienced in heavier streams, like RCO (reduced crude oil) and vacuum residue operating at a temperature of 450 to 600°F. The role of naphthenic acid corrosion is difficult to determine in such streams with respect to the TAN (total acid number) distribution, temperature and velocity. The key precursor is sulfur species which causes “sulfidic corrosion” in such residue streams.
Read more

(2016) Question 17: What are your strategies for managing feed sulfur to reforming units? What are the pros and cons of the different approaches?

It is desirable to have a small amount of sulfur in the feed for CCR reforming units in order to reduce the risk of metal catalyzed coke (MCC) formation and heater-tube carburization and dusting. The sulfur interacts with the chromium and the iron to form a protective layer that reduces the penetration of carbon into the metal.
Read more

(2016) Question 18: The increased production of light straight-run (LSR) from crude units is likely to have an impact on refiners’plans for Tier 3 compliance. What strategies do you employ in order to manage this issue?

Tier 3 drives hydrotreating of essentially all light naphtha streams. Since most United States refineries have FCCs, it is usually desirable to hydrotreat other gasoline streams more completely to minimize the FCC naphtha olefin saturation and the associated octane loss
Read more

(2016) Question 19: What range of sulfur targets for hydrotreated FCC gasoline do you anticipate for Tier 3 operation?

The sulfur target for hydrotreated FCC gasoline is very site dependent. But where possible, it is desirable to hydrotreat all other gasoline streams fully so that the FCC naphtha can be treated as mildly as possible. Deeper desulfurization for FCC naphtha results in increased olefin saturation with the resultant octane loss.
Read more

(2016) Question 20: When is it appropriate to neutralize austenitic stainless-steel equipment to protect against stress corrosion cracking (SCC)? What neutralization procedures and methodologies do you recommend?

Austenitic stainless steels (200-and 300-series steel) are the most common type of stainless steels. Austenite refers specifically to the geometry of the steel (face-centered cubic crystal). These types of steel are most typically recognized as non-magnetic. Austenitic steels are widely used in the industry because they have very desirable mechanical properties. Their austenitic structure is very tough and ductile down to absolute zero. They also do not lose their strength at elevated temperatures as rapidly as ferritic iron base alloys.
Read more

(2016) Question 21: What programs or systems do you employ to monitor hydrotreater furnaces and prevent tube failures and loss of containment? Can you share your experiences using technologies to implement online temperature monitoring of tube skin temperatures?

In nearly all hydroprocessing heaters, MPC has installed tubeskin thermocouples in order to provide continuous monitoring of tube metal temperatures to the DCS (distributed control system) operator. These thermocouples are strategically located in the heater at the areas with the highest estimated maximum heat flux.
Read more

Pagination

  • First page
  • Previous page ‹‹
  • …
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Current page 15
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • …
  • Next page ››
  • Last page

Data & Reports

  • Data & Statistics
  • Publications
  • Technical Papers
  • Annual Report
  • Sustainability Report

Stay in the Know

Subscribe to our monthly industry insights newsletter.

Footer menu (first)

  • My AFPM
  • Events
  • Safety Portal
  • Petrochemical Portal

Footer menu (second)

  • Contact Us
  • Privacy Policy
  • Legal

Connect with Us

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

© 2025 AFPM. All rights reserved 
American Fuel & Petrochemical Manufacturers
1800 M Street, NW Suite 900 North
Washington, DC 20036

Back to Top