Skip to main content
Home Home

Main navigation

  • Industries
    • Products
    • Operations
    • Performance
    • People
    • Contributions

    Industries

    We represent the makers of the fuels that keep Americans moving and the petrochemicals that are the essential building blocks for modern life. Our industries make life better, safer, more productive and — most of all — possible.

  • Issues
    • Fuels & Vehicles
    • Environment
    • Petrochemicals
    • Safety & Health
    • Security
    • Tax & Trade
    • Transportation & Infrastructure
    • Regulatory Reform

    Issues

    We advocate for public policies that promote growth and investment in the refining and petrochemical manufacturing industries to help drive our economy, add jobs, increase energy security and remain competitive in a global economy.

  • Events
    • My Meetings
    • Speaker Guidelines
    • Meeting FAQ
    • Sponsorship
    • Upcoming Events

    View AFPM Calendar of Events

    We offer a portfolio of first-in-class events that educate our members and other stakeholders on critical technical and advocacy issues, supporting the safety, security and success of the fuel and petrochemical industries.

     

  • Newsroom
  • Search
    Enter a list of keywords and press Enter to submit your search query.

Utility Menu (Mobile)

  • About Us
  • Membership
  • Data & Reports
  • Safety Programs

User account menu

  • My AFPM

Social Media Menu - Header

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

Utility Menu

  • About Us
    • About AFPM
    • Our History
    • Careers
    • Contact Us
  • Membership
    • AFPM Membership
    • Member Directory
  • Data & Reports
    • Data & Statistics
    • Publications
    • Technical Papers
    • Annual Report
    • Sustainability Report
  • Safety Programs
    • Safety Portal
    • Advancing Process Safety Programs
    • Occupational Safety Programs
    • Safety Statistics Programs
    • Safety Awards & Recognition
Enter a list of keywords and press Enter to submit your search query.

Q&A

Find the answer to your technical question in AFPM's extensive Q&A database.

wave
  1. Data & Reports
  2. Technical Papers
  3. Q&A

Q&A

These digital transcripts are meant to share information on process safety practices in order to help improve process safety performance and awareness throughout industry. The goal is to capture and share knowledge that could be used by other companies or sites when developing new process safety practices or improving existing ones. The documents being shared have been used by an industry member, but this does not mean it should be used or that it will produce similar results at any other site. Rather, it is an option to consider when implementing or adjusting programs and practices at a site. ​

BY THEMSELVES, THESE DIGITAL TRANSCRIPTS ARE NOT STANDARDS OR RECOMMENDED PRACTICES. THEY ARE NOT INTENDED TO REPLACE SOUND ENGINEERING JUDGMENT. THEY DO NOT PRECLUDE THE USE OF ALTERNATIVE METHODS THAT COMPLY WITH LEGAL REQUIREMENTS. A SUBJECT MATTER EXPERT SHOULD BE CONSULTED PRIOR TO DETERMINING WHETHER A PRACTICE CAN BE USED IN ANY SPECIFIC SITUATION. 

​

Process

  • (-) FCC
    • Alkylation
    • Environmental
    • Catalysts
  • Gasoline Processing
    • Safety
    • Gasoline Processing
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • Crude/Coking
    • (-) CAT POLY Units (CAT Poly)
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Coker
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • Desalting
    • Naphtha Hydrotreating
    • Safety
  • Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD

Submitter

  • Operator
  • Licensor
  • Vendor
  • Consultant

Year QA

  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
Search Filters

Process

  • (-) FCC
    • Alkylation
    • Environmental
    • Catalysts
  • Gasoline Processing
    • Safety
    • Gasoline Processing
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • Crude/Coking
    • (-) CAT POLY Units (CAT Poly)
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Coker
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • Desalting
    • Naphtha Hydrotreating
    • Safety
  • Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD

Submitter

  • Operator
  • Licensor
  • Vendor
  • Consultant

Year QA

  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
Filters

(2012) Question 95: What is the recommended Best Practice regarding the design of catalyst loading and unloading lines with respect to metallurgy, size, run lengths, bends/Ts, cleanout connections, etc.?

KBR’s Best Practice is to fabricate the main catalyst loading and unloading lines with carbon steel. To protect the carbon steel lines against elevated regenerator temperatures, KBR recommends that Operations personnel only de-inventory the converter after the catalyst has been cooled below 650°F.
Read more

(2012) Question 96: What is the CO boiler start-up and shutdown sequence with respect to the FCCU start-up and shutdown timing? What are the reasons for this sequence?

As I mentioned briefly in an earlier question, most of our FCCs with CO boilers start-up with the CO boilers bypassed. If we run partial-burn on any of these FCCs, we tend to start-up in full-burn at reduced rates. Once the feed is in the unit and considered stable, most sites will cut into their CO boiler with the process flow.
Read more

(2012) Question 97: What equipment do you employ to help eliminate ESP hopper and downcomer plugging with catalyst fines? What additional operating practices are used? What type of level detectors are in use on the ESP hoppers and/or catalyst storage silos? Are there any new level detection technologies that could be applied, perhaps from coke drum measurement detectors?

Our main problem with the ESP is fines accumulation in both the ESP hoppers and the transfer line from the hoppers to the fine's storage bin. We have incorporated some design improvements that have helped us minimize, but not completely eliminate, the main problems of condensation in the system and plugging.
Read more

(2012) Question 98: What is your experience with the use of ammonia or steam in the FCC flue gas line in order to improve the operation of the ESP? Please comment on system configuration and operational issues

We have extensive experience with the use of ammonia in the FCC flue gas line in order to improve the conductivity of the particles and improve the operation of the ESP. We inject ammonia at the target level of 10 parts per million or less.
Read more

(2012) Question 99: Have refineries experienced an increase in particulate emissions in the regenerator flue gas caused by oxygen enrichment of air to the regenerator?

We have quite a few refineries that use oxygen enrichment. One of them uses it in very high concentration. None of the sites – and I spoke with them specifically about this – say that they have seen an increase in particulate emissions as a result of increasing their oxygen enrichment.
Read more

Question 11: What process or catalyst options are available for shifting yield selectivities from gasoline to distillate while minimizing the impact on light olefin yields? How are the product properties impacted? How does change-out rate impact the viability of the catalyst options?

Undercutting gasoline into light cycle is the first option and is widely employed. It is quick, it is easy, and it gives an immediate impact. Reducing riser temperature and/or cat-to-oil ratios reduces conversion, while using a ZSM-5 additive to regain C3-C4 olefins is another option.
Read more

Question 13: With the move toward greater utilization of “opportunity crudes” such as Canadian synthetic crudes, what shifts do you expect in FCC product yield and quality, and how will this impact the operation of the FCC unit?

Holly’s choice for opportunity crudes are somewhat limited by our position as an inland refiner and being located far away from many of the crude pipelines. We are making changes in both the way we operate our units, as well as our capital investment, so that we can maintain our current slate with crudes of varying quality.
Read more

Question 14: What reactions lead to acetone formation and how can they be mitigated? We have measured acetone concentrations between 100 and 1,200 ppm in the FCC butanes/butylenes stream.

We have very little data on this subject. We did find data on one virgin gas oil operation with 70 ppm to 110 ppm of acetone. If you are getting 1200 ppm, you probably have organic oxygen coming from some type of catalytically converted feedstock or recycle stream. We do not think you can have this level of acetone with pure virgin feedstock.
Read more

Question 16: A number of refiners are adding a chloride dispersant to address FCC main fractionator overhead system plugging issues. What is your experience with these products and have you had issues with downstream gasoline product quality?

Processing of increased amounts of imported FCC feed, both gasoline and reduced crude, results in increased chloride salts in the main fractionator, which is usually a result of sea water contamination of transfers. Ammonium chloride salt dispersant is a chemical, which can be used to move or disperse ammonium chloride salts to prevent pluggage of the FCC main fractionator.
Read more

Question 21: When operating with one or more catalyst coolers on a regenerator, what control philosophy do you employ (e.g., constant heat duty, constant regenerator temperature, etc.)? What are the advantages and disadvantages for each approach? How does operating in full- or partial-burn impact the control decision?

A catalyst cooler is basically a vertical shell-andtube heat exchanger attached to the regenerator. The cooler extracts high quality heat from the catalyst in the regenerator to produce high pressure steam.
Read more

Pagination

  • First page
  • Previous page ‹‹
  • …
  • Page 35
  • Page 36
  • Page 37
  • Page 38
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • Current page 43

Data & Reports

  • Data & Statistics
  • Publications
  • Technical Papers
  • Annual Report
  • Sustainability Report

Stay in the Know

Subscribe to our monthly industry insights newsletter.

Footer menu (first)

  • My AFPM
  • Events
  • Safety Portal
  • Petrochemical Portal

Footer menu (second)

  • Contact Us
  • Privacy Policy
  • Legal

Connect with Us

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

© 2025 AFPM. All rights reserved 
American Fuel & Petrochemical Manufacturers
1800 M Street, NW Suite 900 North
Washington, DC 20036

Back to Top