Skip to main content
Home Home

Main navigation

  • Industries
    • Products
    • Operations
    • Performance
    • People
    • Contributions

    Industries

    We represent the makers of the fuels that keep Americans moving and the petrochemicals that are the essential building blocks for modern life. Our industries make life better, safer, more productive and — most of all — possible.

  • Issues
    • Fuels & Vehicles
    • Environment
    • Petrochemicals
    • Safety & Health
    • Security
    • Tax & Trade
    • Transportation & Infrastructure
    • Regulatory Reform

    Issues

    We advocate for public policies that promote growth and investment in the refining and petrochemical manufacturing industries to help drive our economy, add jobs, increase energy security and remain competitive in a global economy.

  • Events
    • My Meetings
    • Speaker Guidelines
    • Meeting FAQ
    • Sponsorship
    • Upcoming Events

    View AFPM Calendar of Events

    We offer a portfolio of first-in-class events that educate our members and other stakeholders on critical technical and advocacy issues, supporting the safety, security and success of the fuel and petrochemical industries.

     

  • Newsroom
  • Search
    Enter a list of keywords and press Enter to submit your search query.

Utility Menu (Mobile)

  • About Us
  • Membership
  • Data & Reports
  • Safety Programs

User account menu

  • My AFPM

Social Media Menu - Header

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

Utility Menu

  • About Us
    • About AFPM
    • Our History
    • Careers
    • Contact Us
  • Membership
    • AFPM Membership
    • Member Directory
  • Data & Reports
    • Data & Statistics
    • Publications
    • Technical Papers
    • Annual Report
    • Sustainability Report
  • Safety Programs
    • Safety Portal
    • Advancing Process Safety Programs
    • Occupational Safety Programs
    • Safety Statistics Programs
    • Safety Awards & Recognition
Enter a list of keywords and press Enter to submit your search query.

Q&A

Find the answer to your technical question in AFPM's extensive Q&A database.

wave
  1. Data & Reports
  2. Technical Papers
  3. Q&A

Q&A

These digital transcripts are meant to share information on process safety practices in order to help improve process safety performance and awareness throughout industry. The goal is to capture and share knowledge that could be used by other companies or sites when developing new process safety practices or improving existing ones. The documents being shared have been used by an industry member, but this does not mean it should be used or that it will produce similar results at any other site. Rather, it is an option to consider when implementing or adjusting programs and practices at a site. ​

BY THEMSELVES, THESE DIGITAL TRANSCRIPTS ARE NOT STANDARDS OR RECOMMENDED PRACTICES. THEY ARE NOT INTENDED TO REPLACE SOUND ENGINEERING JUDGMENT. THEY DO NOT PRECLUDE THE USE OF ALTERNATIVE METHODS THAT COMPLY WITH LEGAL REQUIREMENTS. A SUBJECT MATTER EXPERT SHOULD BE CONSULTED PRIOR TO DETERMINING WHETHER A PRACTICE CAN BE USED IN ANY SPECIFIC SITUATION. 

​

Process

  • (-) Crude/Coking
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Coker
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • CAT POLY Units (CAT Poly)
    • Desalting
    • Naphtha Hydrotreating
    • Safety
  • Gasoline Processing
    • Safety
    • Gasoline Processing
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • FCC
    • Alkylation
    • Environmental
    • Catalysts
  • Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD

Submitter

  • Licensor
  • Operator
  • Vendor
  • Consultant

Year QA

  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
Search Filters

Process

  • (-) Crude/Coking
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Coker
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • CAT POLY Units (CAT Poly)
    • Desalting
    • Naphtha Hydrotreating
    • Safety
  • Gasoline Processing
    • Safety
    • Gasoline Processing
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • FCC
    • Alkylation
    • Environmental
    • Catalysts
  • Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD

Submitter

  • Licensor
  • Operator
  • Vendor
  • Consultant

Year QA

  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
Filters

(2017) Question 42: What water sources are you using for desalter waterwash, and what are the advantages and disadvantages of each? What role does desalter waterwash source and injection location play in desalter performance?

Over the years, we have established several Best Practices concerning desalter wash water rates, quality, injection locations, and sources that – when utilized – help ensure optimum crude oil desalting. 
Read more

(2010) Question 51: In your experience, what are the implications on coker heater run length and coke drum operations with the following feedstock quality: Contaminants (Na, Ca), low saturates or high asphaltenes, crude compatibility, solvent deasphalt (SDA) pitch, low asphaltenes and high saturates?

There are at least three main mechanisms under which the heater tubes become fouled: •Inorganic material deposition or precipitation, •Rapid asphaltene precipitation, •Coke formation
Read more

(2010) Question 54: What is the current best practice for number of feed nozzles, angle, and location on coke drums considering the use of slide valves for the bottom unheading device?

There is not a one-size-fits-all answer to this question. However, we believe that an arrangement that closely matches the conventional bottom center upflow arrangement will provide more uniform thermal stresses on the drum and minimize operational impact.
Read more

(2010) Question 55: What is considered the best-in-class design for coker main fractionator wash zones? Have refiners seen good performance and target run lengths using grids in this service?

Cokers today are normally designed to operate to maximize liquid yield from the unit. This will require the coker to operate at as low a recycle as possible while still maintaining the required product specifications for the heavy coker gas oil (carbon content, metals, asphaltenes, etc.). For a low recycle operation a spray chamber is the best-in-class.
Read more

(2010) Question 56: Some crude tower overhead deposition appears to be linked to corrosion treatment programs (i.e. filming corrosion inhibitors and neutralizers). Have you confirmed this and what are the potential mechanisms that can lead to this deposition?

Corrosion inhibitors (filmers) have been known to cause deposition in several different ways. Generally, the cause is injection into an overhead that is too hot, flashing off the carrier, or injection of neat chemical, flashing off its solvent.
Read more

(2010) Question 58: In your experience has a non-phosphorous corrosion inhibitor been successfully used to mitigate naphthenic acid corrosion? In what circumstances and under what conditions are non-phosphorous corrosion inhibitors used?

Phosphorus-based naphthenic acid corrosion inhibitors have been successfully used in the refining industry since the early 1980’s. Phosphorus provides its protection to steel by corroding it and forming a passive layer that, under SEM/EDS, proves to be an Iron/Phosphorus/Sulfur blend.
Read more

(2010) Question 59: What are refiners using to define the corrosivity of high acid crude oils and how is this data obtained?

In line with industry rules of thumb, Marathon considers a crude to be high acid with a whole crude Total Acid Number (TAN) above 0.5% or a side stream above 1.5%. With low sulfur crude slates the maximum TAN may be reduced, as one of our refineries that runs a predominantly sweet slate experienced naphthenic acid corrosion resulting in the TAN limit being reduced to 0.3%. Crudes are blended to the refinery TAN limit with sulfur, metallurgy and specific stream temperatures taken into account.
Read more

(2010) Question 60: Please discuss advanced methods you use to monitor corrosion in operating units. Are any of these used in conjunction with the DCS for continuous on-line monitoring?

Marathon utilizes three methods of corrosion monitoring in the crude/vacuum units: multipoint resistance measurement (iicorr, FSM, GEBetz RCM) systems for naphthenic acid corrosion, ER probes, and corrosion coupons. While the use of coupons may not be considered an ‘advanced method’ for monitoring corrosion, we do continue to utilize them in our refining system.
Read more

(2010) Question 64: Please discuss the latest tray and packing technologies for improved fractionation efficiency in existing crude and vacuum units. In particular, what is the effectiveness in terms of fouling/plugging and resulting run length?

Well designed and installed fractionator tray, packing and liquid/vapor distributor equipment are one important tool in ensuring the crude/vacuum unit is able to reach its targeted runlength. A good understanding of operating parameters along with measures and systems to ensure that operation stays within those parameters are the other tools necessary to meet that targeted runlength.
Read more

(2010) Question 65: What methods do you use for heat recovery from furnace flue gas equipment at ~260°C (500°F)?

Air preheat systems are used for recovery of heat from flue gas down to app. 300 deg F. The 300 deg F temperature is set based on limiting dewpoint corrosion on cold metal surfaces. This temperature will vary depending on the materials employed, the sulfur content of the treated fuel gas, and cold ambient temperature.
Read more

Pagination

  • First page
  • Previous page ‹‹
  • …
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • Current page 35
  • Page 36
  • Page 37
  • Page 38
  • Page 39
  • …
  • Next page ››
  • Last page

Data & Reports

  • Data & Statistics
  • Publications
  • Technical Papers
  • Annual Report
  • Sustainability Report

Stay in the Know

Subscribe to our monthly industry insights newsletter.

Footer menu (first)

  • My AFPM
  • Events
  • Safety Portal
  • Petrochemical Portal

Footer menu (second)

  • Contact Us
  • Privacy Policy
  • Legal

Connect with Us

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

© 2025 AFPM. All rights reserved 
American Fuel & Petrochemical Manufacturers
1800 M Street, NW Suite 900 North
Washington, DC 20036

Back to Top