Skip to main content
Home Home

Main navigation

  • Industries
    • Products
    • Operations
    • Performance
    • People
    • Contributions

    Industries

    We represent the makers of the fuels that keep Americans moving and the petrochemicals that are the essential building blocks for modern life. Our industries make life better, safer, more productive and — most of all — possible.

  • Issues
    • Fuels & Vehicles
    • Environment
    • Petrochemicals
    • Safety & Health
    • Security
    • Tax & Trade
    • Transportation & Infrastructure
    • Regulatory Reform

    Issues

    We advocate for public policies that promote growth and investment in the refining and petrochemical manufacturing industries to help drive our economy, add jobs, increase energy security and remain competitive in a global economy.

  • Events
    • My Meetings
    • Speaker Guidelines
    • Meeting FAQ
    • Sponsorship
    • Upcoming Events

    View AFPM Calendar of Events

    We offer a portfolio of first-in-class events that educate our members and other stakeholders on critical technical and advocacy issues, supporting the safety, security and success of the fuel and petrochemical industries.

     

  • Newsroom
  • Search
    Enter a list of keywords and press Enter to submit your search query.

Utility Menu (Mobile)

  • About Us
  • Membership
  • Data & Reports
  • Safety Programs

User account menu

  • My AFPM

Social Media Menu - Header

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

Utility Menu

  • About Us
    • About AFPM
    • Our History
    • Careers
    • Contact Us
  • Membership
    • AFPM Membership
    • Member Directory
  • Data & Reports
    • Data & Statistics
    • Publications
    • Technical Papers
    • Annual Report
    • Sustainability Report
  • Safety Programs
    • Safety Portal
    • Advancing Process Safety Programs
    • Occupational Safety Programs
    • Safety Statistics Programs
    • Safety Awards & Recognition
Enter a list of keywords and press Enter to submit your search query.

Q&A

Find the answer to your technical question in AFPM's extensive Q&A database.

wave
  1. Data & Reports
  2. Technical Papers
  3. Q&A

Q&A

These digital transcripts are meant to share information on process safety practices in order to help improve process safety performance and awareness throughout industry. The goal is to capture and share knowledge that could be used by other companies or sites when developing new process safety practices or improving existing ones. The documents being shared have been used by an industry member, but this does not mean it should be used or that it will produce similar results at any other site. Rather, it is an option to consider when implementing or adjusting programs and practices at a site. ​

BY THEMSELVES, THESE DIGITAL TRANSCRIPTS ARE NOT STANDARDS OR RECOMMENDED PRACTICES. THEY ARE NOT INTENDED TO REPLACE SOUND ENGINEERING JUDGMENT. THEY DO NOT PRECLUDE THE USE OF ALTERNATIVE METHODS THAT COMPLY WITH LEGAL REQUIREMENTS. A SUBJECT MATTER EXPERT SHOULD BE CONSULTED PRIOR TO DETERMINING WHETHER A PRACTICE CAN BE USED IN ANY SPECIFIC SITUATION. 

​

Process

  • (-) FCC
    • Alkylation
    • Environmental
    • Catalysts
  • (-) Crude/Coking
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Coker
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • CAT POLY Units (CAT Poly)
    • Desalting
    • Naphtha Hydrotreating
    • Safety
  • Gasoline Processing
    • Safety
    • Gasoline Processing
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD

Submitter

  • Operator
  • Licensor
  • Vendor
  • Consultant

Year QA

  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
Search Filters

Process

  • (-) FCC
    • Alkylation
    • Environmental
    • Catalysts
  • (-) Crude/Coking
    • Process
    • Operations
    • Corrosion
    • Mechanical
    • Coker
    • Reliability
    • Crude Quality
    • Vacuum Tower
    • Distillation
    • CAT POLY Units (CAT Poly)
    • Desalting
    • Naphtha Hydrotreating
    • Safety
  • Gasoline Processing
    • Safety
    • Gasoline Processing
    • Desalting
    • Reforming
    • Catalytic Reforming
    • Isomerization
    • Naphtha Hydrotreating
    • Aromatics
    • HF Alkylation (HF Alky)
    • Blending
    • Plant Services
  • Hydroprocessing
    • Catalysts
    • Resid Hydrocracking
    • Hydrocracking Catalyst
    • Feed Quality
    • Fouling
    • Naphtha Hydrotreating
    • ULSD

Submitter

  • Operator
  • Licensor
  • Vendor
  • Consultant

Year QA

  • 2019
  • 2018
  • 2017
  • 2016
  • 2015
  • 2014
  • 2013
  • 2012
  • 2011
  • 2010
Filters

(2015) Question 86: With more refiners upgrading to packing in the reactor stripper, what has been your experience with reliability? When do you consider removing packing for inspection during turnaround? How much of the packing does one spare?

We installed packing in our reactor stripper in 2006. So far, the only issue we have seen was in 2012. When we went into the reactor, we had refractory and coke debris from various areas of the reactor that had fallen onto the top of the packing and partially clogged and blocked a portion of the packing. We had already made the decision to remove all of the packing to evaluate whether there was any erosion with the new configuration (there was not), but we would have needed to remove at least the top two layers for cleaning anyway due to the debris. 
Read more

(2015) Question 87: What has been your experience with gas and/or catalyst bypassing behind monolithic refractory linings? What are the possible approaches to prevent or correct this issue?

Most refractory problems are often due to poor installation and cyclic service. Hot spots are observed in the shell due to major refractory failure; but much more commonly, from the circulation behind the refractory. We have experienced gas and catalyst going behind the monolithic refractory lining. In such cases, hot gases are driven through the refractory by the head of the catalyst just above the entry point. The gas then exits from the dilute phase at the lower pressure zone. As the gas continues to travel through cracks and heats up the metal, the metal tries to expand while the refractory does not expand, which leads to refractory failure. 
Read more

(2015) Question 88: Describe your approach to repair and improvement (i.e., materials, design, installation, and anchors) to areas that have seen repeated refractory failures.

Speaking of the improper refractory repair, especially in a hot-wall refractory with the coking service, low alloy base metal requires a 300°F preheat along with removal of all sulfides on the metal surface. If you do not do this, you will get weak and brittle welds that will crack easily because of their low weld strength. And therefore, your anchors will break off and your refractory will fail due to the coke growth behind the refractory. 
Read more

(2015) Question 89: For an equipment revamp/replacement, what are the factors you consider when choosing between hot-wall and cold-wall refractory design, including advantages and disadvantages of each?

Shell has experience with both cold-wall and hot-wall refractory designs for reactors and stripper vessels, but regenerator vessels are always cold-wall refractory designs. Depending on the reactor and stripper vessel, refractory type and standpipes, liftpots, and external portions of the riser can be either cold-wall or hot-wall designs.
Read more

(2015) Question 90: We are planning to purchase a new flue gas steam generator. What is your preferred configuration? What are the critical operating parameters you employ to ensure reliable operation? What is your sparing philosophy?

The configuration of the flue gas steam generator will be predominantly governed by FCC design. For a partial-combustion unit, it will be a CO boiler or a CO incinerator cum FGC (flue gas cooler) combination. For complete combustion, it will be a FGC or waste heat boiler alone. By CO boiler, typically we mean a boiler where the steam generating tubes are exposed to direct flame.
Read more

(2015) Question 91: What are your top three causes of unit slowdowns, and what is the loss in onstream factor for each? Please provide the same information for your top three causes of unit shutdowns.

FCC/RFCC units are the one of the major secondary units in almost all of IOCL’s refineries. Irrespective of demand positions, these units are always required to operate at high capacities. All of our refineries had been participating in the benchmarking surveys conducted by Solomon Associates, and the results comparing IOCL FCC units with rest of the world (2014 study) are indicated below.
Read more

(2014) Question 56: How will the recently announced EPA requirement to depressure coke drums to below 2 Psig prior to venting to atmosphere regulations impact your coker operation and design?

In order to meet the potential requirement of less than 2 psig prior to atmospheric venting, new units designed to operate at low coke drum pressure will require additional equipment such as an ejector system discharging to a condenser (potentially the blowdown or fractionator overhead condenser) to adequately reduce the coke drum pressure prior to atmospheric venting.
Read more

(2014) Question 57: If vacuum tower bottom feed to the Coker unit drops below unit minimum, what are your operating options available?

Increasing amount of tight oil production with hardly any residual fraction will lead to challenges in filling up the Delayed Coking Unit (DCU). In order to maintain the DCU capacity, external purchase of HFO or VR will have to be made.
Read more

(2014) Question 58: What are you using for velocity medium in coker heaters? Are you using boiler feed water?

If Condensate or BFW is used as velocity media or to clear the heater tubes during a heater trip, precautions must be taken as excess free water has the potential to overpressure the heater during a shut-in condition.
Read more

(2014) Question 59: What is your experience processing a crude oil that has been treated with a pour point depressant and/or wax dispersant agent?

Some laboratory simulation experience has demonstrated that there were no adverse impacts to processing crude oil treated with a certain pour point depressant relative to oil-water separation for desalting.
Read more

Pagination

  • First page
  • Previous page ‹‹
  • …
  • Page 61
  • Page 62
  • Page 63
  • Page 64
  • Current page 65
  • Page 66
  • Page 67
  • Page 68
  • Page 69
  • …
  • Next page ››
  • Last page

Data & Reports

  • Data & Statistics
  • Publications
  • Technical Papers
  • Annual Report
  • Sustainability Report

Stay in the Know

Subscribe to our monthly industry insights newsletter.

Footer menu (first)

  • My AFPM
  • Events
  • Safety Portal
  • Petrochemical Portal

Footer menu (second)

  • Contact Us
  • Privacy Policy
  • Legal

Connect with Us

  • Icon
  • Icon
  • Icon
  • Icon
  • Icon

© 2025 AFPM. All rights reserved 
American Fuel & Petrochemical Manufacturers
1800 M Street, NW Suite 900 North
Washington, DC 20036

Back to Top